



HLJ Technology Co., Ltd.

# Preliminary Specification

Project Code : 3H501

Product : 1135nm 32mil-552E

**Confidential and Proprietary – HLJ Technology Co., Ltd.**

## **NO PUBLIC DISCLOSURE PERMITTED**

**Restricted Distribution:** Not to be distributed to anyone who is not an employee of either HLJ or its subsidiaries without the express approval of HLJ's Configuration Management. Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of HLJ Technology Co., Ltd. This technical data may be subject to Taiwan and international export, re-export, or transfer ("export") laws. Diversion contrary to Taiwan and international law is strictly prohibited.

## Specification

The specification applies to GaAs infrared chip for 1135nm wavelength range.

The 3H501 is a 1135nm 32 mil Vertical Cavity Surface Emitting Laser (VCSEL) chip. The product characterized by the visible light wavelength and unique oxide-confined process of VCSELs.

### Features

- Wavelength: 1135nm
- Chip size:  $800 \times 800 \pm 15 \mu\text{m}$
- Chip thickness :  $150 \pm 15 \mu\text{m}$
- Drive current : 5A
- Output power : 2.6W @ pulse width 20 $\mu\text{s}$ , Duty 6%
- Electrode side : Gold alloy on both anode P(emission side) and cathode N(backside)
- Other configurations available on request

### Applications

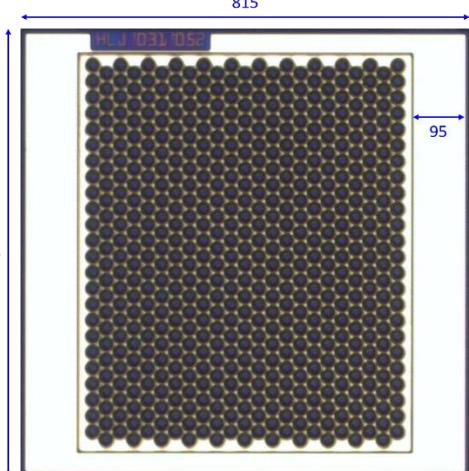
- Moving sensor/ Gesture
- Optical encoders
- 3D sensing
- Health or medical product
- Mobile and consumer

### Electrical Optical Characteristics

$T_A = 25^\circ\text{C}$  unless otherwise noted

| Parameter                   | Symbol                   | Min. | Typ. | Max. | Unit                 | Test Condition      |
|-----------------------------|--------------------------|------|------|------|----------------------|---------------------|
| Threshold Current           | $I_{th}$                 | -    | 400  | -    | mA                   |                     |
| Output Power                | $P_o$                    | -    | 2600 | -    | mW                   | $I_f=5\text{A}$     |
| Forward Voltage             | $V_f$                    | 1.7  | 2.0  | 2.3  | V                    | $I_f=5\text{A}$     |
| Slope Efficiency (S.E.)     | $\eta_s$                 | 0.3  | 0.4  | -    | W/A                  | $I_f=5\text{A}$     |
| Center Wavelength           | $\lambda_c$              | 1125 | 1135 | 1145 | nm                   | $I_f=5\text{A}$     |
| Power Conversion Efficiency | PCE                      | 20   |      | -    | %                    | $I_f=5\text{A}$     |
| Wavelength Shift            | $\Delta\lambda/\Delta T$ | -    | 0.07 | -    | nm/ $^\circ\text{C}$ | $I_f=5\text{A}$     |
| Beam Divergence             | $\theta$                 | -    | 24   | -    | deg.                 | Full Width 1/ $e^2$ |

Note 1: Forward Voltage ( $V_f$ ) measurement allowance is  $\pm 0.1\text{V}$ .


Note 2: Center Wavelength ( $\lambda_c$ ) measurement allowance is  $\pm 1.5\text{nm}$ .

Note 3: Others measurement allowance is  $\pm 10\%$ .

Note 4: Wafer on probe system test and chip mounted on Cu star board, and measured with operating bias current @ 5A, Pulse Width:20 $\mu\text{s}$ , Duty Cycle 6%.



## Dimensions



| Specification  | Min. | Typ. | Max. |
|----------------|------|------|------|
| Chip width     | 800  | 815  | 830  |
| Chip length    | 800  | 815  | 830  |
| Chip thickness | 135  | 150  | 165  |
| Bond pad width | -    | 95   | -    |

Unit: µm

## Other Information

### ■ RoHs Compliance:

HLJ committed to environment protection and sustainable development, this part complies with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) and the relevant of held as part of our controlled documentation.

### ■ Packaging Q'ty:

500 ea/ die sheet, 8 die sheet/pack, 6 pack/ box, 6 box/ cargo box

### ■ ESD Protection:

VCSEL is very sensitive to Electrostatic discharge (ESD) and Electrical over stress (EOS), excessive ESD have damage the chip and result in performance degradation. Make sure during the whole usage and installation process that no ESD exist and electrical circuits are equipped with surge protection.

### ■ Important Notice:

The data provided in this data sheet shall be typical. In accordance with the HLJ policy of continuous improvement, specifications may change without notice.

## Revision History

| Revision | Description           | Author        | Release Date |
|----------|-----------------------|---------------|--------------|
| 0.1      | Establish a Datasheet | Yi-Fang, Chen | 2023/3/24    |
|          |                       |               |              |