

# Specification

Project Code : 1C310

Product : 850nm 25Gb/sDual Top ContactMultimode VCSEL Array

**Confidential and Proprietary – HLJ Technology Co., Ltd.**

**NO PUBLIC DISCLOSURE PERMITTED**

**Restricted Distribution:** Not to be distributed to anyone who is not an employee of either HLJ or its subsidiaries without the express approval of HLJ's Configuration Management. Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of HLJ Technology Co., Ltd. This technical data may be subject to Taiwan and international export, re-export, or transfer ("export") laws. Diversion contrary to Taiwan and international law is strictly prohibited.



## Specification

The specification applies to GaAs based infrared chip for 850nm wavelength range.

The 1C310-200G is an 850nm 1x4 Vertical Cavity Surface Emitting Laser (VCSEL) chips are designed for high-speed optical data communication applications. The product characterized by the unique VCSELs oxide-confined aperture process design and provides stable electro-optical characteristic and high reliability.

**Part Number : VC854C40000-R001**

| Features                                                                                                                                                                                                                                  | Applications                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>850nm center optical wavelength</li> <li>3dB Bandwidth 16GHz</li> <li>Data rates from DC to 50 Gbps</li> <li>Multi-mode beam profile</li> <li>Other configurations available on request</li> </ul> | <ul style="list-style-type: none"> <li>Consumer electronics</li> <li>Single channel and parallel fiber optical communication links</li> <li>Transceivers, active optical cables, HDMI</li> </ul> |

### Electrical Optical Characteristics

| Parameter               | Symbol          | Min. | Typ. | Max. | Unit     | Condition                                 |
|-------------------------|-----------------|------|------|------|----------|-------------------------------------------|
| Threshold Current       | $I_{th}$        | ***  | 0.6  | 1    | mA       | $T=25^{\circ}\text{C}$                    |
| Output Power            | $P_o$           | ***  | 4    | ***  | mW       | $I_f = 7.5\text{mA}$                      |
| Slope Efficiency (S.E.) | $\eta_s$        | ***  | 0.6  | ***  | mW/mA    | $I_f = 7.5\text{mA}$                      |
| Forward Voltage         | $V_f$           | ***  | 2.1  | 2.3  | V        | $I_f = 7.5\text{mA}$                      |
| Resistance              | $R_s$           | ***  | 65   | 90   | $\Omega$ | $I_f = 7.5\text{mA}$                      |
| Center Wavelength       | $\lambda_c$     | 840  | 850  | 860  | nm       | $I_f = 7.5\text{mA}$                      |
| Spectral Bandwidth      | $\Delta\lambda$ | ***  | ***  | 0.6  | nm       | $I_f = 7.5\text{mA}$ , Full Width $1/e^2$ |



| Beam Divergence              | $\theta$         | ***  | 27   | ***  | deg.  | $I_f = 7.5\text{mA}$ |
|------------------------------|------------------|------|------|------|-------|----------------------|
| Parameter                    | Symbol           | Min. | Typ. | Max. | Unit  | Condition            |
| Rise Time (20~80%)           | $T_r$            | ***  | 15   | ***  | ps    | $I_f = 7.5\text{mA}$ |
| Fall Time (80~20%)           | $T_f$            | ***  | 15   | ***  | ps    | $I_f = 7.5\text{mA}$ |
| Wavelength Tuning over Temp. | ***              | ***  | 0.07 | ***  | nm/K  |                      |
| 3dB Bandwidth                | $f_{3\text{dB}}$ | ***  | 16   | ***  | GHz   | $I_f = 7.5\text{mA}$ |
| Relative Intensity Noise     | RIN              | ***  | -130 | ***  | dB/Hz | $I_f = 7.5\text{mA}$ |

## Note:

- All parameters except mentioned are measured at  $I_f = 7.5\text{mA}$ ,  $T_a = 25^\circ\text{C}$ , CW.
- Forward Voltage ( $V_f$ ) measurement allowance is  $\pm 0.1\text{V}$ .
- Center Wavelength ( $\lambda_c$ ) measurement allowance is  $\pm 1.5\text{nm}$ .
- Others measurement allowance is  $\pm 5\%$ .



## Absolute Maximum Rating

| Parameter                         | Symbol           | Rating    | Unit | Condition                |
|-----------------------------------|------------------|-----------|------|--------------------------|
| Storage Temperature               | T <sub>stg</sub> | -40 ~ 100 | °C   |                          |
| Operating Temperature             | T <sub>op</sub>  | 0 ~ 85    | °C   |                          |
| Peak forward current (max. 10sec) | I <sub>f</sub>   | 12        | mA   |                          |
| Maximum Package SMT Solder Reflow | T <sub>sol</sub> | 260       | °C   | Solder Time < 10 seconds |
| Human Body Model                  | HBM              | 100       | V    |                          |

**Note:**

- Different package type will affect the Absolute Maximum Ratings data, and for HLJ the lasers are mounted on TO-46 headers for burn-in and characteristic test.
- The maximum CW laser current in the Absolute Maximum Ratings is valid for the operating temperature noted at the table above. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
- These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" shall not be applied.
- Absolute Maximum Ratings are limiting values that shall not be exceeded, even instantaneously. Exposure to absolute-maximum-rating conditions for extended periods may affect reliability of the device, and electrical parameters are guaranteed only within the recommended operating temperature range.
- Electrostatic discharge (ESD) damage is major source affecting the lifetime of oxide VCSEL, excessive ESD could damage the VCSEL chip and result in performance degradation and reliability failure, make sure during the whole usage and installation process that no ESD exists.

## Dimensions

| Specification (1x1)           | Unit | Min. | Typ. | Max. | Condition                |
|-------------------------------|------|------|------|------|--------------------------|
| Number of emitters            | ea   |      | 1    |      | -                        |
| Length(X), Width(Y)           | µm   | 220  | 235  | 250  | Included die saw street. |
| Thickness                     | µm   | 135  | 150  | 165  | -                        |
| Emitter surface area diameter | µm   | -    | 12   | -    | -                        |
| Bond pad size                 | µm   | -    | 70   | -    | Emitter side             |



| Specification (1x4)           | Unit | Min. | Typ. | Max. | Condition                |
|-------------------------------|------|------|------|------|--------------------------|
| Number of emitters            | ea   | 4    |      |      | -                        |
| Length(X)                     | μm   | 970  | 985  | 1000 | Included die saw street. |
| Width(Y)                      | μm   | 220  | 235  | 35   | Included die saw street. |
| Thickness                     | μm   | 135  | 150  | 165  | -                        |
| Emitter surface area diameter | μm   | -    | 12   | -    | -                        |
| Bond pad size                 | μm   | -    | 70   | -    | Emitter side             |

## Note:

- All dimensions are in micrometers.
- Length, Width and Thickness tolerance are  $\pm 15\mu\text{m}$
- Emitter & Bond pad size tolerance are  $\pm 1.5\mu\text{m}$



## Other Information

### ■ RoHs Compliance:

HLJ committed to environment protection and sustainable development, this part complies with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) and the relevant of held as part of our controlled documentation.

### ■ Packaging Q'ty:

1.5K ea/Die sheet, 8 Die sheet/Antistatic bag, 6 Antistatic bag/Box, 6 Box/Carton box.

### ■ ESD Protection:

VCSEL is very sensitive to Electrostatic discharge (ESD) and Electrical over stress (EOS), excessive ESD have damage the chip and result in performance degradation. Make sure during the whole usage and installation process that no ESD exist and electrical circuits are equipped with surge protection.

### ■ Important Notice:

The data provided in this data sheet shall be typical. In accordance with the HLJ policy of continuous improvement, specifications may change without notice.

## Revision History

| Revision | Description           | Author     | Release Date |
|----------|-----------------------|------------|--------------|
| 1        | Establish a Datasheet | Ethan_Wang | 2022/04/08   |
| 2        | If change             | Ethan_Wang | 2022/10/13   |
| 3        | Add product code      | Ethan_Wang | 2022/10/17   |
| 4        | Revised file format   | Ethan_Wang | 2022/11/09   |